Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;48(10):1116-24.
doi: 10.1109/10.951514.

A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry

Affiliations

A new algorithm for linear and nonlinear ARMA model parameter estimation using affine geometry

S Lu et al. IEEE Trans Biomed Eng. 2001 Oct.

Abstract

A linear and nonlinear autoregressive (AR) moving average (MA) (ARMA) identification algorithm is developed for modeling time series data. The new algorithm is based on the concepts of affine geometry in which the salient feature of the algorithm is to remove the linearly dependent ARMA vectors from the pool of candidate ARMA vectors. For noiseless time series data with a priori incorrect model-order selection, computer simulations show that accurate linear and nonlinear ARMA model parameters can be obtained with the new algorithm. Many algorithms, including the fast orthogonal search (FOS) algorithm, are not able to obtain correct parameter estimates in every case, even with noiseless time series data, because their model-order search criteria are suboptimal. For data contaminated with noise, computer simulations show that the new algorithm performs better than the FOS algorithm for MA processes, and similarly to the FOS algorithm for ARMA processes. However, the computational time to obtain the parameter estimates with the new algorithm is faster than with FOS. Application of the new algorithm to experimentally obtained renal blood flow and pressure data show that the new algorithm is reliable in obtaining physiologically understandable transfer function relations between blood pressure and flow signals.

PubMed Disclaimer

Similar articles

Cited by

Publication types