Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct 4;413(6855):534-8.
doi: 10.1038/35097104.

Direct ligand-receptor complex interaction controls Brassica self-incompatibility

Affiliations

Direct ligand-receptor complex interaction controls Brassica self-incompatibility

S Takayama et al. Nature. .

Abstract

Many higher plants have evolved self-incompatibility mechanisms to prevent self-fertilization. In Brassica self-incompatibility, recognition between pollen and the stigma is controlled by the S locus, which contains three highly polymorphic genes: S-receptor kinase (SRK), S-locus protein 11 (SP11) (also called S-locus cysteine-rich protein; SCR) and S-locus glycoprotein (SLG). SRK encodes a membrane-spanning serine/threonine kinase that determines the S-haplotype specificity of the stigma, and SP11 encodes a small cysteine-rich protein that determines the S-haplotype specificity of pollen. SP11 is localized in the pollen coat. It is thought that, during self-pollination, SP11 is secreted from the pollen coat and interacts with its cognate SRK in the papilla cell of the stigma to elicit the self-incompatibility response. SLG is a secreted stigma protein that is highly homologous to the SRK extracellular domain. Although it is not required for S-haplotype specificity of the stigma, SLG enhances the self-incompatibility response; however, how this is accomplished remains controversial. Here we show that a single form of SP11 of the S8 haplotype (S8-SP11) stabilized with four intramolecular disulphide bonds specifically binds the stigma membrane of the S8 haplotype to induce autophosphorylation of SRK8, and that SRK8 and SLG8 together form a high-affinity receptor complex for S8-SP11 on the stigma membrane.

PubMed Disclaimer

Publication types

MeSH terms