Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Sep 15;164(6):1038-42.
doi: 10.1164/ajrccm.164.6.2104033.

Increased lipid peroxidation in patients with pulmonary hypertension

Affiliations
Comparative Study

Increased lipid peroxidation in patients with pulmonary hypertension

J L Cracowski et al. Am J Respir Crit Care Med. .

Abstract

Isoprostanes are chemically stable lipid peroxidation products of arachidonic acid, the quantification of which provides a novel approach to the assessment of oxidative stress in vivo. The main objective of this study was to quantify the urinary levels of isoprostaglandin F(2alpha) type III (iPF(2alpha)-III), an F(2)-isoprostane, in patients with pulmonary hypertension (PHT) in comparison with healthy controls. The secondary objective was to test whether baseline iPF(2alpha)-III levels correlate to the reversibility of pulmonary hypertension in response to inhaled NO challenge. Urinary iPF(2alpha)-III levels were measured by gas chromatography-mass spectrometry in 25 patients with PHT, 14 of whom were investigated for response to inhaled NO challenge. Urinary iPF(2alpha)-III levels in PHT patients (225 +/- 27 pmol/mmol creatinine) were 2.3 times as high as in controls (97 +/- 7 pmol/mmol creatinine, p < 0.001). The mean pulmonary arterial pressure variation and the pulmonary vascular resistance variation in response to inhaled NO were correlated to basal iPF(2alpha)-III levels. This study shows that oxidative stress is increased in patients with pulmonary hypertension. Furthermore, iPF(2alpha)-III levels inversely correlate to pulmonary vasoreactivity. These observations are consistent with the hypothesis that free radical generation is involved in PHT pathogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources