Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug 24;69(14):1609-17.
doi: 10.1016/s0024-3205(01)01235-8.

Different role of endothelium/nitric oxide in 17beta-estradiol- and progesterone-induced relaxation in rat arteries

Affiliations

Different role of endothelium/nitric oxide in 17beta-estradiol- and progesterone-induced relaxation in rat arteries

H Y Chan et al. Life Sci. .

Abstract

The present study was aimed to examine the different role of endothelium/nitric oxide in relaxation induced by two female sex hormones, 17beta-estradiol and progesterone in rat isolated aortas and mesenteric arteries. The isometric force of each ring was measured with Grass force-displacement transducers in the organ bathes. 17beta-Estradiol induced both endothelium-dependent and -independent relaxation in the rat aortas but only the endothelium-independent relaxation in the rat mesenteric arteries. In contrast. progesterone induced both endothelium-dependent and -independent relaxation in the rat mesenteric arteries but only endothelium-independent relaxation in rat aortas. N(G)-Nitro-L-arginine methyl ester and methylene blue attenuated the relaxant response to 17beta-estradiol in the aortic rings or to progesterone in the mesenteric arteries. Pretreatment with L-arginine antagonized the effect of N(G)-nitro-L-arginine methyl ester on sex hormone-induced relaxation. The endothelium contribution to relaxation seems to only relate to lower concentrations of 17beta-estradiol and progesterone. In summary, the present results clearly demonstrate a different role of the functional endothelium in the relaxant response to 17beta-estradiol or progesterone in the conduit vessel (aorta) and the resistance vessels (mesenteric artery). Nitric oxide contributes largely to the endothelium-dependent relaxation induced by 17beta-estradiol in the isolated aortas or by progesterone in the mesenteric arteries.

PubMed Disclaimer

Publication types

LinkOut - more resources