Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep-Oct;16(5):315-9.
doi: 10.1002/bio.661.

Effect of aqueous cigarette smoke extract on the chemiluminescence kinetics of polymorphonuclear leukocytes and on their glycolytic and phagocytic activity

Affiliations

Effect of aqueous cigarette smoke extract on the chemiluminescence kinetics of polymorphonuclear leukocytes and on their glycolytic and phagocytic activity

B Zappacosta et al. Luminescence. 2001 Sep-Oct.

Abstract

Water-soluble extracts of cigarette smoke are easily formed in some body compartments, such as saliva or fluid lining alveolar spaces, and can act on both cellular and extracellular compartments. In this paper we have analysed the effect of aqueous smoke extract on some metabolic and functional aspects of polymorphonuclear leukocytes. In particular, the following cellular aspects were studied: chemiluminescence, glycolysis, membrane fluidity and microscopic interaction with zymosan particles. While chemiluminescence and glycolytic activity are highly inhibited, no effect of smoke extract on membrane fluidity was observed. Moreover, the response of luminol-dependent chemiluminescence was significantly delayed, while that of lucigenin-dependent chemiluminescence was anticipated. Furthermore, the phagocytic ability of neutrophils pretreated with aqueous smoke extract was also significantly hindered. All these results might indicate that the finely tuned activity of polymorphonuclear leukocytes is somehow hampered by the aqueous extract of cigarette smoke in a way which makes these cells less effective against bacteria and more noxious towards surrounding tissues.

PubMed Disclaimer

MeSH terms

LinkOut - more resources