Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;18(3):259-69.
doi: 10.1006/mcne.2001.1020.

Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration

Affiliations

Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration

S Tang et al. Mol Cell Neurosci. 2001 Sep.

Abstract

The adult, mammalian CNS does not regenerate after injury largely because of a glial scar and inhibitors of regeneration in myelin. To date, two myelin inhibitors, myelin-associated glycoprotein (MAG) and Nogo, both transmembrane proteins, have been identified. No secreted inhibitors of regeneration have been described. However, a proteolytic fragment of MAG (dMAG), consisting of the entire extracellular domain, is readily released from myelin and is found in vivo. Here, we show, first, that a soluble, chimeric form of MAG (MAG-Fc), when secreted from CHO cells in a collagen gel and hence in the absence of a fixed substrate, inhibits/deflects neurite outgrowth from P6 dorsal root ganglion (DRG) neurons. This inhibition was blocked when a MAG monoclonal antibody was included in the gel and a control chimera sialoadhesin-Fc (Sn-Fc), which, like MAG, binds neurons in a sialic acid-dependent manner but does not inhibit axonal growth, had no effect. Using the same assay system we showed that factors secreted from damaged white matter inhibited/deflected neurite outgrowth. This inhibition was neutralized when a MAG monoclonal antibody was included in the gel and there was no inhibition when white matter from a MAG knockout mouse was used. Factors secreted from damaged white matter from wild-type mice had no effect on neurite outgrowth from E18 DRG neurons. These results show that factors secreted from damaged white matter inhibit axonal regeneration and that the majority of inhibitory activity can be accounted for by dMAG. Thus, released dMAG is likely to play an important role in preventing regeneration, immediately after injury before the glial scar forms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources