Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct 15;167(8):4719-28.
doi: 10.4049/jimmunol.167.8.4719.

Apoptosis-inducing human-origin Fcepsilon-Bak chimeric proteins for targeted elimination of mast cells and basophils: a new approach for allergy treatment

Affiliations

Apoptosis-inducing human-origin Fcepsilon-Bak chimeric proteins for targeted elimination of mast cells and basophils: a new approach for allergy treatment

R Belostotsky et al. J Immunol. .

Abstract

During the past few years, many chimeric proteins have been developed to specifically target and kill cells expressing specific surface molecules. Generally these molecules carry a bacterial or plant toxin to destroy the unwanted cells. The major obstacle regarding these molecules in their clinical application is the immunogenicity and nonspecific toxicity associated with bacterial or plant toxins. We lately reported a new approach for construction of chimeric proteins: we successfully replaced bacterial or plant toxins with human apoptosis-inducing proteins. The resulting chimeras were shown to specifically induce apoptosis in the target cells. Taking advantage of the human apoptosis inducing proteins Bak and Bax as novel killing components, we have now constructed new chimeric proteins targeted against the human FcepsilonRI, expressed mainly on mast cells and basophils. These cells are the main effectors of the allergic response. Treatment of the target cells with the new chimeric proteins, termed Fcepsilon-Bak/Bax, had a dramatic effect on cell survival, causing apoptosis. The effect was specific to cells expressing the FcepsilonRI of both human and, very unexpectedly, also of mouse origin. Moreover, interaction of the chimeric proteins with the mast cells did not cause degranulation. Fcepsilon-Bak/Bax are new chimeric proteins of human origin and, as such, are expected to be both less immunogenic and less toxic and, thus, may be specific and efficient reagents for the treatment of allergic diseases.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources