Apoptosis-inducing human-origin Fcepsilon-Bak chimeric proteins for targeted elimination of mast cells and basophils: a new approach for allergy treatment
- PMID: 11591803
- DOI: 10.4049/jimmunol.167.8.4719
Apoptosis-inducing human-origin Fcepsilon-Bak chimeric proteins for targeted elimination of mast cells and basophils: a new approach for allergy treatment
Abstract
During the past few years, many chimeric proteins have been developed to specifically target and kill cells expressing specific surface molecules. Generally these molecules carry a bacterial or plant toxin to destroy the unwanted cells. The major obstacle regarding these molecules in their clinical application is the immunogenicity and nonspecific toxicity associated with bacterial or plant toxins. We lately reported a new approach for construction of chimeric proteins: we successfully replaced bacterial or plant toxins with human apoptosis-inducing proteins. The resulting chimeras were shown to specifically induce apoptosis in the target cells. Taking advantage of the human apoptosis inducing proteins Bak and Bax as novel killing components, we have now constructed new chimeric proteins targeted against the human FcepsilonRI, expressed mainly on mast cells and basophils. These cells are the main effectors of the allergic response. Treatment of the target cells with the new chimeric proteins, termed Fcepsilon-Bak/Bax, had a dramatic effect on cell survival, causing apoptosis. The effect was specific to cells expressing the FcepsilonRI of both human and, very unexpectedly, also of mouse origin. Moreover, interaction of the chimeric proteins with the mast cells did not cause degranulation. Fcepsilon-Bak/Bax are new chimeric proteins of human origin and, as such, are expected to be both less immunogenic and less toxic and, thus, may be specific and efficient reagents for the treatment of allergic diseases.
Similar articles
-
Utilizing Fcepsilon-Bak chimeric protein for studying IgE-FcepsilonRI interactions.Clin Immunol. 2004 Jan;110(1):89-99. doi: 10.1016/j.clim.2003.08.014. Clin Immunol. 2004. PMID: 14962800
-
Inhibition of allergen-specific IgE reactivity by a human Ig Fcgamma-Fcepsilon bifunctional fusion protein.J Allergy Clin Immunol. 2004 Aug;114(2):321-7. doi: 10.1016/j.jaci.2004.03.058. J Allergy Clin Immunol. 2004. PMID: 15316510
-
GnRH-Bik/Bax/Bak chimeric proteins target and kill adenocarcinoma cells; the general use of pro-apoptotic proteins of the Bcl-2 family as novel killing components of targeting chimeric proteins.Apoptosis. 2000 Dec;5(6):531-42. doi: 10.1023/a:1009689529756. Apoptosis. 2000. PMID: 11303912
-
Molecular targets on mast cells and basophils for novel therapies.J Allergy Clin Immunol. 2014 Sep;134(3):530-44. doi: 10.1016/j.jaci.2014.03.007. Epub 2014 Apr 24. J Allergy Clin Immunol. 2014. PMID: 24767877 Review.
-
Omalizumab may not inhibit mast cell and basophil activation in vitro.J Eur Acad Dermatol Venereol. 2015 Sep;29(9):1832-6. doi: 10.1111/jdv.12693. Epub 2014 Sep 26. J Eur Acad Dermatol Venereol. 2015. PMID: 25257818 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous