Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct 9;57(7):1269-77.
doi: 10.1212/wnl.57.7.1269.

Autism in tuberous sclerosis complex is related to both cortical and subcortical dysfunction

Affiliations

Autism in tuberous sclerosis complex is related to both cortical and subcortical dysfunction

E Asano et al. Neurology. .

Abstract

Objective: To examine the relationship between autism and epilepsy in relation to structural and functional brain abnormalities in children with tuberous sclerosis complex (TSC).

Methods: Children with TSC and intractable epilepsy underwent MRI as well as PET scans with 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) and alpha-[(11)C]methyl-L-tryptophan (AMT). Based on the results of Autism Diagnostic Interview-Revised, Gilliam Autism Rating Scale, and overall adaptive behavioral composite (OABC) from Vineland Adaptive Behavior Scale, subjects were divided into three groups: autistic (OABC < 70; n = 9), mentally-retarded nonautistic (OABC < 70; n = 9), and relatively normal intelligence (OABC > or = 70; n = 8).

Results: PET studies showed that the autistic group had decreased glucose metabolism in the lateral temporal gyri bilaterally, increased glucose metabolism in the deep cerebellar nuclei bilaterally, and increased AMT uptake in the caudate nuclei bilaterally, compared to the mentally-retarded nonautistic group. In addition, a history of infantile spasms and glucose hypometabolism in the lateral temporal gyri were both significantly associated with communication disturbance. Glucose hypermetabolism in the deep cerebellar nuclei and increased AMT uptake in the caudate nuclei were both related to stereotypical behaviors and impaired social interaction, as well as communication disturbance.

Conclusions: These results suggest that generalized epilepsy in early life and functional deficits in the temporal neocortices may be associated with communication delays, and that functional imbalance in subcortical circuits may be associated with stereotypical behaviors and impaired social interaction in children with TSC.

PubMed Disclaimer

Publication types

MeSH terms