c-myc box II mutations in Burkitt's lymphoma-derived alleles reduce cell-transformation activity and lower response to broad apoptotic stimuli
- PMID: 11593416
- DOI: 10.1038/sj.onc.1204827
c-myc box II mutations in Burkitt's lymphoma-derived alleles reduce cell-transformation activity and lower response to broad apoptotic stimuli
Abstract
In addition to c-myc rearrangement, over 50% of Burkitt's lymphoma cases present clustered mutations in exon 2, where many of the functional activities of c-Myc protein are based. This report describes the functional consequences induced by tumour-derived c-myc mutations located in c-myc box II. Two mutated alleles were studied, focusing on the P138C mutation, and compared to wild-type c-myc. The c-Myc transformation, transactivation and apoptosis activities were explored based on cells over-expressing c-Myc. While the transcriptional activation activity was not affected, our experiments exploring the anchorage-independent growth capacity of c-Myc-transfected Rat1a cells showed that c-Myc box II mutants were less potent than wild-type c-Myc in promoting cell transformation. Considering the possibility that these mutations could be interfering with the ability of c-Myc to promote apoptosis, we tested c-Myc-transfected Rat1a fibroblasts under several conditions: serum deprivation-, staurosporine- and TNFalpha-induced cell death. Interestingly, the mutated alleles were characterized by an overall decrease in ability to mediate apoptosis. Our study indicates that point mutations located in c-Myc box II can decrease the ability of the protein to promote both transformation and apoptosis without modifying its transactivating activity.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources