Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;281(5):E1015-21.
doi: 10.1152/ajpendo.2001.281.5.E1015.

N-glycosylation of CRF receptor type 1 is important for its ligand-specific interaction

Affiliations
Free article

N-glycosylation of CRF receptor type 1 is important for its ligand-specific interaction

I Q Assil et al. Am J Physiol Endocrinol Metab. 2001 Nov.
Free article

Abstract

The corticotropin-releasing factor (CRF) receptor type 1 (CRFR1) contains five potential N-glycosylation sites: N38, N45, N78, N90, and N98. Cells expressing CRFR1 were treated with tunicamycin to block receptor glycosylation. The nonglycosylated receptor did not bind the radioligand and had a decreased cAMP stimulation potency in response to CRF. To determine which of the polysaccharide chain(s) is/are involved in ligand interaction, the polysaccharide chains were deleted using site-directed mutagenesis of the glycosylation consensus, N-X-S/T. Two sets of mutations were performed for each glycosylation site: N to Q and S/T to A, respectively. The single mutants Q38, Q45, Q78, Q90, Q98, A40, A47, A80, A92, and A100 and the double mutants A40/A47 and A80/A100 were well expressed, bound CRF, sauvagine (SVG), and urotensin-I (UTS-I) with a normal affinity, and increased cAMP accumulation with a high efficiency. In contrast, the combined mutations A80/A92/A100, A40/A80/A92/A100, and A40/A47/A80/A92/A100 had low levels of expression, did not bind the radioligand, and had a decreased cAMP stimulation. These data indicate the requirement for three or more polysaccharide chains for normal CRFR1 function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources