Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Oct 29;439(4):450-68.
doi: 10.1002/cne.1362.

Serotonergic and octopaminergic systems in the squat lobster Munida quadrispina (Anomura, Galatheidae)

Affiliations
Comparative Study

Serotonergic and octopaminergic systems in the squat lobster Munida quadrispina (Anomura, Galatheidae)

B L Antonsen et al. J Comp Neurol. .

Abstract

Immunocytochemical mapping of serotonergic and octopaminergic neurons in the central nervous system of the squat lobster Munida quadrispina reveal approximately 120 serotonin-immunoreactive cell bodies (distributed throughout the neuromeres except in abdominal ganglion 5) and 48 octopamine-immunoreactive cell bodies (in brain and thoracic neuromeres but none in the circumesophageal or abdominal ganglia). Immunopositive neuropils for both amines are distributed in multiple areas in each neuromere and overlap extensively. Serotonergic and octopaminergic neurons have extensive bilateral projections in abdominal ganglia, whereas the majority of projections in thoracic and subesophageal ganglia are unilateral (contralateral to soma). This difference correlates with typical differences between abdominal and thoracic motor system coordination. Processes of immunoreactive cells for both amines form extensive, peripheral, neurosecretory-like structures. Serotonin seems to be released peripherally in more segments, and from more nerves per segment, than octopamine. M. quadrispina has fewer serotonergic and octopaminergic immunoreactive cells, in particular, fewer segmentally repeated cells, than other species studied to date. Nevertheless, the general organization of the aminergic systems is similar, and several aminergic cells have locations and morphologies that strongly suggest homology with identified aminergic cells in other crustaceans. Among these are segmentally repeated neurons that, in M. quadrispina, form serotonin-immunopositive tubular structures in the thoracic hemiganglia innervating pereiopods 1-3 that are unlike anything reported previously for any species. Comparisons of immunocytochemical maps within one species and between species exhibiting different behaviors provide insights into possible sites of action, functional differences between, and evolution of biogenic aminergic systems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources