Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;281(5):L1115-22.
doi: 10.1152/ajplung.2001.281.5.L1115.

Inhibition of voltage-gated K(+) currents by endothelin-1 in human pulmonary arterial myocytes

Affiliations
Free article

Inhibition of voltage-gated K(+) currents by endothelin-1 in human pulmonary arterial myocytes

L A Shimoda et al. Am J Physiol Lung Cell Mol Physiol. 2001 Nov.
Free article

Abstract

Recent studies demonstrate that endothelin-1 (ET-1) constricts human pulmonary arteries (PA). In this study, we examined possible mechanisms by which ET-1 might constrict human PA. In smooth muscle cells freshly isolated from these arteries, whole cell patch-clamp techniques were used to examine voltage-gated K(+) (K(V)) currents. K(V) currents were isolated by addition of 100 nM charybdotoxin and were identified by current characteristics and inhibition by 4-aminopyridine (10 mM). ET-1 (10(-8) M) caused significant inhibition of K(V) current. Staurosporine (1 nM), a protein kinase C (PKC) inhibitor, abolished the effect of ET-1. Rings of human intrapulmonary arteries (0.8-2 mm OD) were suspended in tissue baths for isometric tension recording. ET-1-induced contraction was maximal at 10(-8) M, equal to that induced by K(V) channel inhibition with 4-aminopyridine, and attenuated by PKC inhibitors. These data suggest that ET-1 constricts human PA, possibly because of myocyte depolarization via PKC-dependent inhibition of K(V). Our results are consistent with data we reported previously in the rat, suggesting similar mechanisms may be operative in both species.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources