Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Oct 12;89(8):650-60.
doi: 10.1161/hh2001.098351.

Prostaglandin H synthase and vascular function

Affiliations
Free article
Review

Prostaglandin H synthase and vascular function

S T Davidge. Circ Res. .
Free article

Abstract

Prostaglandin H synthase (PGHS) is a rate-limiting enzyme in the production of prostaglandins and thromboxane, which are important regulators of vascular function. Under normal physiological conditions, PGHS-dependent vasodilators (such as prostacyclin) modulate vascular tone. However, PGHS-dependent vasoconstriction (mediated by thromboxane and/or its immediate precursor, PGH(2)) predominates in some vascular pathologies (eg, systemic hypertension, diabetes, cerebral ischemia, and aging). This review will discuss the role of PGHS-dependent modulation of vascular function in a number of vascular beds (systemic, pulmonary, cerebral, and uterine) with an emphasis on vascular pathophysiology. Moreover, the specific contributions of the different isoforms (PGHS-1 and PGHS-2) are discussed. Understanding the role of PGHS in vascular function is of particular importance because they are the targets of the commonly used nonsteroidal antiinflammatory drugs (NSAIDs), which include aspirin and ibuprofen. Importantly, with the advent of specific PGHS-2 inhibitors for treatment of conditions such as chronic inflammatory disease, it is an opportune time to review the data regarding PGHS-dependent modulation of vascular function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources