Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Sep;16(3):696-706.
doi: 10.1128/JVI.16.3.696-706.1975.

Adenovirus binds to rat brain microtubules in vitro

Adenovirus binds to rat brain microtubules in vitro

R B Luftig et al. J Virol. 1975 Sep.

Abstract

We have found by negative staining electron microscopy that when similar concentrations of adenovirus and reovirus (viruses of about the same diameter, 75 to 80 nm, and density, 1.34 to 1.36 g/cm3) were incubated with a carbon support film containing microtubules, 72% of adenovirus on the grid, but only 32% (equivalent to random association) of reovirus, were associated with microtubules. Similar concentrations of both larger and smaller particles, such as polystyrene latex spheres and coliphage f2, also exhibited a low degree of interaction, viz., 17 to 37%, with microtubules. Moreover, 90% of microtubule-associated adenovirus binds to within +/- 4 nm of the edge of microtubules, but lower fractions (again equivalent to a random association) of the other particles bind to the edge of the microtubules. The mechanism behind this phenomenon, which we denote as "edge binding," is presently obscure; however, it provides us with a second, albeit empirical, method to distinguish between the microtubular association of adenovirus and other particles. We found that edge binding of adenovirus also occurred when adenovirus was initially placed on the carbon support film and then incubated with microtubules and when adenovirus and microtubules were mixed prior to placement on the support. In contrast, reovirus or the other particles prepared by similar techniques exhibited a random amount of edge binding. The binding of adenovirus appears to involve the hexon capsomers of the virion since (i) high resolution electron micrographs showed that the edge of the virus was in contact with the edge of the microtubules, and (ii) adenovirions briefly treated with formamide to remove pentons and fibers bind as efficiently as intact virions. Core structures, which were obtained by further formamide degradation of the virion, do not associate with microtubules. These observations support the hypothesis of Dales and Chardonnet (1973) that the transport of adenovirions within infected cells is mediated by interaction with microtubules.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Virol. 1968 Dec;2(12):1429-42 - PubMed
    1. J Cell Biol. 1962 May;13:303-22 - PubMed
    1. Virology. 1971 Nov;46(2):277-97 - PubMed
    1. J Virol. 1970 Jul;6(1):78-86 - PubMed
    1. Virology. 1973 Mar;52(1):130-47 - PubMed

Publication types

LinkOut - more resources