Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Oct;95(2 Suppl):215-20.
doi: 10.3171/spi.2001.95.2.0215.

Comparison of the biomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model

Affiliations
Comparative Study

Comparison of the biomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model

P W Hitchon et al. J Neurosurg. 2001 Oct.

Abstract

Object: Polymethylmethacrylate (PMMA) has long been used in the stabilization and reconstruction of traumatic and pathological fractures of the spine. Recently, hydroxyapatite (HA), an osteoconductive, biocompatible cement, has been used as an alternative to PMMA. In this study the authors compare the stabilizing effects of the HA product, BoneSource, with PMMA in an experimental compression fracture of L-1.

Methods: Twenty T9-L3 cadaveric spine specimens were mounted individually on a testing frame. Light-emitting diodes were placed on the neural arches as well as the base. Motion was tracked by two video cameras in response to applied loads of 0 to 6 Nm. The weight-drop technique was used to induce a reproducible compression fracture of T-11 after partially coring out the vertebra. Load testing was performed on the intact spine. postfracture, after unilateral transpedicular vertebroplasty with 7 to 10 ml of PMMA or HA, and after flexion-extension fatiguing to 5000 cycles at +/- 3 Nm. No significant difference between the HA- and PMMA cemented-fixated spines was demonstrated in flexion, extension, left lateral bending, or right and left axial rotation. The only difference between the two cements was encountered before and after fatiguing in right lateral bending (p < or = 0.05).

Conclusions: The results of this study suggest that the same angular rigidity can be achieved using either HA or PMMA. This is of particular interest because HA is osteoconductive, undergoes remodeling, and is not exothermic.

PubMed Disclaimer

Publication types

LinkOut - more resources