Endothelin-1 decreases glutamate uptake in primary cultured rat astrocytes
- PMID: 11600412
- DOI: 10.1152/ajpcell.2001.281.5.C1495
Endothelin-1 decreases glutamate uptake in primary cultured rat astrocytes
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide that is also known to induce a wide spectrum of biological responses in nonvascular tissue. In this study, we found that ET-1 (100 nM) inhibited the glutamate uptake in cultured astrocytes expressing the glutamate/aspartate transporter (GLAST); astrocytes did not express the glutamate transporter-1 (GLT-1). The V(max) and the K(m) of the glutamate uptake were reduced by 57% and 47%, respectively. Application of the ET(A) and ET(B) receptor antagonists BQ-123 and BQ-788 partly inhibited the ET-1-evoked decrease in the glutamate uptake, whereas the nonspecific ET receptor antagonist bosentan completely inhibited this decrease. Incubation of the cultures with pertussis toxin abolished the effect of ET-1 on the uptake. The ET-1-induced decrease in the glutamate uptake was independent of extracellular free Ca(2+) concentration, whereas the intracellular Ca(2+) antagonists thapsigargin and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester abolished the effect of ET-1 on the glutamate uptake. Incubation with the protein kinase C (PKC) antagonist staurosporine, but not with the fatty acid-binding protein bovine serum albumin, prevented the ET-1-induced decrease in the glutamate uptake. These results suggest that ET-1 impairs the high-affinity glutamate uptake in cultured astrocytes through a G protein-coupled mechanism, involving PKC and changes in intracellular Ca(2+).
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
