Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;281(5):C1635-41.
doi: 10.1152/ajpcell.2001.281.5.C1635.

Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent

Affiliations
Free article

Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent

S W Donahue et al. Am J Physiol Cell Physiol. 2001 Nov.
Free article

Abstract

Bone adaptation to mechanical loading is dependent on age and the frequency and magnitude of loading. It is believed that load-induced fluid flow in the porous spaces of bone is an important signal that influences bone cell metabolism and bone adaptation. We used fluid flow-induced shear stress as a mechanical stimulus to study intracellular calcium (Ca) signaling in rat osteoblastic cells (ROB) isolated from young, mature, and old animals. Fluid flow produced higher magnitude and more abundant [Ca(2+)](i) oscillations than spontaneous oscillations, suggesting that flow-induced Ca signaling encodes a different cellular message than spontaneous oscillations. ROB from old rats showed less basal [Ca(2+)](i) activity and were less responsive to fluid flow. Cells were more responsive to 0.2 Hz than to 1 or 2 Hz and to 2 Pa than to 1 Pa. These data suggest that the frequency and magnitude of mechanical loading may be encoded by the percentage of cells displaying [Ca(2+)](i) oscillations but that the ability to transduce this information may be altered with age.

PubMed Disclaimer

Publication types

LinkOut - more resources