Model of gamma frequency burst discharge generated by conditional backpropagation
- PMID: 11600618
- DOI: 10.1152/jn.2001.86.4.1523
Model of gamma frequency burst discharge generated by conditional backpropagation
Abstract
Pyramidal cells of the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus have been shown to produce oscillatory burst discharge in the gamma-frequency range (20-80 Hz) in response to constant depolarizing stimuli. Previous in vitro studies have shown that these bursts arise through a recurring spike backpropagation from soma to apical dendrites that is conditional on the frequency of action potential discharge ("conditional backpropagation"). Spike bursts are characterized by a progressive decrease in inter-spike intervals (ISIs), and an increase of dendritic spike duration and the amplitude of a somatic depolarizing afterpotential (DAP). The bursts are terminated when a high-frequency somatic spike doublet exceeds the dendritic spike refractory period, preventing spike backpropagation. We present a detailed multi-compartmental model of an ELL basilar pyramidal cell to simulate somatic and dendritic spike discharge and test the conditions necessary to produce a burst output. The model ionic channels are described by modified Hodgkin-Huxley equations and distributed over both soma and dendrites under the constraint of available immunocytochemical and electrophysiological data. The currents modeled are somatic and dendritic sodium and potassium involved in action potential generation, somatic and proximal apical dendritic persistent sodium, and K(V)3.3 and fast transient A-like potassium channels distributed over the entire model cell. The core model produces realistic somatic and dendritic spikes, differential spike refractory periods, and a somatic DAP. However, the core model does not produce oscillatory spike bursts with constant depolarizing stimuli. We find that a cumulative inactivation of potassium channels underlying dendritic spike repolarization is a necessary condition for the model to produce a sustained gamma-frequency burst pattern matching experimental results. This cumulative inactivation accounts for a frequency-dependent broadening of dendritic spikes and results in a conditional failure of backpropagation when the intraburst ISI exceeds dendritic spike refractory period, terminating the burst. These findings implicate ion channels involved in repolarizing dendritic spikes as being central to the process of conditional backpropagation and oscillatory burst discharge in this principal sensory output neuron of the ELL.
Similar articles
-
Conditional spike backpropagation generates burst discharge in a sensory neuron.J Neurophysiol. 2000 Sep;84(3):1519-30. doi: 10.1152/jn.2000.84.3.1519. J Neurophysiol. 2000. PMID: 10980024
-
Persistent Na+ current modifies burst discharge by regulating conditional backpropagation of dendritic spikes.J Neurophysiol. 2003 Jan;89(1):324-37. doi: 10.1152/jn.00729.2002. J Neurophysiol. 2003. PMID: 12522183
-
TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron.J Neurosci. 1994 Nov;14(11 Pt 1):6453-71. doi: 10.1523/JNEUROSCI.14-11-06453.1994. J Neurosci. 1994. PMID: 7965050 Free PMC article.
-
Oscillatory burst discharge generated through conditional backpropagation of dendritic spikes.J Physiol Paris. 2002 Sep-Dec;96(5-6):517-30. doi: 10.1016/S0928-4257(03)00007-X. J Physiol Paris. 2002. PMID: 14692499 Review.
-
Control of Na+ spike backpropagation by intracellular signaling in the pyramidal neuron dendrites.Mol Neurobiol. 2000 Aug-Dec;22(1-3):129-41. doi: 10.1385/MN:22:1-3:129. Mol Neurobiol. 2000. PMID: 11414276 Review.
Cited by
-
Population coding by electrosensory neurons.J Neurophysiol. 2008 Apr;99(4):1825-35. doi: 10.1152/jn.01266.2007. Epub 2008 Feb 6. J Neurophysiol. 2008. PMID: 18256161 Free PMC article.
-
Neurophysiological and computational principles of cortical rhythms in cognition.Physiol Rev. 2010 Jul;90(3):1195-268. doi: 10.1152/physrev.00035.2008. Physiol Rev. 2010. PMID: 20664082 Free PMC article. Review.
-
On the application of "equation-free modelling" to neural systems.J Comput Neurosci. 2006 Feb;20(1):5-23. doi: 10.1007/s10827-006-3843-z. Epub 2006 Feb 20. J Comput Neurosci. 2006. PMID: 16511658
-
A dynamic dendritic refractory period regulates burst discharge in the electrosensory lobe of weakly electric fish.J Neurosci. 2003 Feb 15;23(4):1524-34. doi: 10.1523/JNEUROSCI.23-04-01524.2003. J Neurosci. 2003. PMID: 12598641 Free PMC article.
-
Routing the flow of sensory signals using plastic responses to bursts and isolated spikes: experiment and theory.J Neurosci. 2011 Feb 16;31(7):2461-73. doi: 10.1523/JNEUROSCI.4672-10.2011. J Neurosci. 2011. PMID: 21325513 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources