Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;22(5):333-40.
doi: 10.1076/ceyr.22.5.333.5491.

Expression of type XII collagen and hemidesmosome-associated proteins in keratoconus corneas

Affiliations

Expression of type XII collagen and hemidesmosome-associated proteins in keratoconus corneas

E L Cheng et al. Curr Eye Res. 2001 May.

Abstract

Purpose: Keratoconus is a disease characterized by thinning of the central and paracentral cornea and scarring in advanced cases. This study was performed to examine the expression of type XII collagen, proteins associated with hemidesmosomes, and beta1 integrin in keratoconus corneas.

Methods: Corneal buttons were collected from normal subjects and patients with keratoconus and other corneal diseases. Immunofluorescence staining was performed on frozen sections for type XII collagen, bullous pemphigoid antigen (BP180), and integrin subunits alpha6, beta4, and beta1.

Results: To varying degrees, all proteins examined were expressed in normal human corneas. The staining intensity of type XII collagen was diminished in keratoconus corneas in the epithelial basement membrane zone and the stromal matrix. No significant variation was found in either the staining patterns or intensities for BP180, or integrins alpha6, beta4, and beta1.

Conclusions: The level of type XII collagen was reduced in the epithelial basement membrane zone and stromal matrices in keratoconus corneas. These alterations may affect critical interactions of the corneal epithelium with the under-lying basement membrane, and cell-matrix interactions and matrix organization in the stroma.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources