Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct 23;40(42):12619-27.
doi: 10.1021/bi015624b.

Phosphorylation of the regulator of G protein signaling RGS9-1 by protein kinase A is a potential mechanism of light- and Ca2+-mediated regulation of G protein function in photoreceptors

Affiliations

Phosphorylation of the regulator of G protein signaling RGS9-1 by protein kinase A is a potential mechanism of light- and Ca2+-mediated regulation of G protein function in photoreceptors

N Balasubramanian et al. Biochemistry. .

Abstract

In vertebrate photoreceptors, photoexcited rhodopsin interacts with the G protein transducin, causing it to bind GTP and stimulate the enzyme cGMP phosphodiesterase. The rapid termination of the active state of this pathway is dependent upon a photoreceptor-specific regulator of G protein signaling RGS9-1 that serves as a GTPase activating protein (GAP) for transducin. Here, we show that, in preparations of photoreceptor outer segments (OS), RGS9-1 is readily phosphorylated by an endogenous Ser/Thr protein kinase. Protein kinase C and MAP kinase inhibitors reduced labeling by about 30%, while CDK5 and CaMK II inhibitors had no effect. cAMP-dependent protein kinase (PKA) inhibitor H89 reduced RGS9-1 labeling by more than 90%, while dibutyryl-cAMP stimulated it 3-fold, implicating PKA as the major kinase responsible for RGS9-1 phosphorylation in OS. RGS9-1 belongs to an RGS subfamily also including RGS6, RGS7, and RGS11, which exist as heterodimers with the G protein beta subunit Gbeta5. Phosphorylated RGS9-1 remains associated with Gbeta5L, a photoreceptor-specific splice form, which itself was not phosphorylated. RGS9-1 immunoprecipitated from OS was in vitro phosphorylated by exogenous PKA. The PKA catalytic subunit could also phosphorylate recombinant RGS9-1, and mutational analysis localized phosphorylation sites to Ser(427) and Ser(428). Substitution of these residues for Glu, to mimic phosphorylation, resulted in a reduction of the GAP activity of RGS9-1. In OS, RGS9-1 phosphorylation required the presence of free Ca(2+) ions and was inhibited by light, suggesting that RGS9-1 phosphorylation could be one of the mechanisms mediating a stronger photoresponse in dark-adapted cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources