Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001;25(5):403-24.
doi: 10.1023/a:1017988925742.

Quantitative classification of life-style types in predaceous phytoseiid mites

Affiliations

Quantitative classification of life-style types in predaceous phytoseiid mites

H K Lu et al. Exp Appl Acarol. 2001.

Abstract

Classification of species into different functional groups based on biological criteria has been a difficult problem in ecology. The difficulty mainly arises because natural classification patterns are not necessarily mutually exclusive. The more group characteristics overlap, the more difficult it is to identify the membership of a species in the overlapping portions of any two groups. In this paper, we present an application of discriminant analysis by creating classification models from life history and morphological data for two specialist and two generalist life-styles type of predaceous phytoseiid mites. Two stages can be distinguished in our method: life-style group membership assignment and trait variable evaluation. We use a Bayesian framework to create a classifier system to locate or assign species within a mixture of trait distributions. The method assumes that a mixture of trait distributions can represent the multiple dimensions of biological data. The mixture is most evident near the boundaries between groups. Because of the complexity of analytical solution, an iterative method is used to estimate the unknown means, variances, and mixing proportion between groups. We also developed a criterion based on information theory to evaluate model performance with different combinations of input variables and different hypotheses. We present a working example of our proposed methods. We apply these methods to the problem of selecting key species for inoculative release and for classical introductions of biological pest control agents.

PubMed Disclaimer

References

    1. Annu Rev Entomol. 1997;42:291-321 - PubMed
    1. Science. 1995 Jul 21;269(5222):316-7 - PubMed

LinkOut - more resources