Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;156(5 Pt 1):535-44.
doi: 10.1667/0033-7587(2001)156[0535:iokkah]2.0.co;2.

Identification of KIN (KIN17), a human gene encoding a nuclear DNA-binding protein, as a novel component of the TP53-independent response to ionizing radiation

Affiliations

Identification of KIN (KIN17), a human gene encoding a nuclear DNA-binding protein, as a novel component of the TP53-independent response to ionizing radiation

C Masson et al. Radiat Res. 2001 Nov.

Abstract

Ionizing radiation elicits a genetic response in human cells that allows cell survival. The human KIN (also known as KIN17) gene encodes a 45-kDa nuclear DNA-binding protein that participates in the response to UVC radiation and is immunologically related to the bacterial RecA protein. We report for the first time that ionizing radiation and bleomycin, a radiomimetic drug, which produce single- and double-strand breaks, increased expression of KIN in human cells established from tumors, including MeWo melanoma, MCF7 breast adenocarcinoma, and ATM+ GM3657 lymphoblast cells. KIN expression increased rapidly in a dose-dependent manner after irradiation. Under the same conditions, several genes controlled by TP53 were induced with kinetics similar to that of KIN. Using the CDKN1A gene as a marker of TP53 responsiveness, we analyzed the up-regulation of KIN and showed that is independent of the status of TP53 and ATM. In contrast, the presence of a dominant mutant for activating transcription factor 2 (ATF2) completely abolished the up-regulation of KIN. Our results suggest a role for ATF2 in the TP53-independent increase in KIN expression after gamma irradiation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources