Stable transformation of plastids in higher plants
- PMID: 11607112
- PMCID: PMC54989
- DOI: 10.1073/pnas.87.21.8526
Stable transformation of plastids in higher plants
Abstract
Stable genetic transformation of the plastid genome is reported in a higher plant, Nicotiana tabacum. Plastid transformation was obtained after bombardment of leaves with tungsten particles coated with pZS148 plasmid DNA. Plasmid pZS148 (9.6 kilobases) contains a 3.7-kilobase plastid DNA fragment encoding the 16S rRNA. In the 16S rRNA-encoding DNA (rDNA) a spectinomycin resistance mutation is flanked on the 5' side by a streptomycin resistance mutation and on the 3' side by a Pst I site generated by ligating an oligonucleotide in the intergenic region. Transgenic lines were selected by spectinomycin resistance and distinguished from spontaneous mutants by the flanking, cotransformed streptomycin resistance and Pst I markers. Regenerated plants are homoplasmic for the spectinomycin resistance and the Pst I markers and heteroplasmic for the unselected streptomycin resistance trait. Transgenic plastid traits are transmitted to the seed progeny. The transgenic plastid genomes are products of a multistep process, involving DNA recombination, copy correction, and sorting out of plastid DNA copies.
Similar articles
-
Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems.Plant J. 1993 May;3(5):729-38. Plant J. 1993. PMID: 8397038
-
High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene.Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):913-7. doi: 10.1073/pnas.90.3.913. Proc Natl Acad Sci U S A. 1993. PMID: 8381537 Free PMC article.
-
Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin.Mol Gen Genet. 1991 Aug;228(1-2):316-9. doi: 10.1007/BF00282483. Mol Gen Genet. 1991. PMID: 1832206
-
Advances of selectable marker genes in plastid genetic engineering.Yi Chuan. 2017 Sep 20;39(9):810-827. doi: 10.16288/j.yczz.16-433. Yi Chuan. 2017. PMID: 28936979 Review.
-
Plastid transformation in higher plants.Annu Rev Plant Biol. 2004;55:289-313. doi: 10.1146/annurev.arplant.55.031903.141633. Annu Rev Plant Biol. 2004. PMID: 15377222 Review.
Cited by
-
Optimization of transplastomic production of hemicellulases in tobacco: effects of expression cassette configuration and tobacco cultivar used as production platform on recombinant protein yields.Biotechnol Biofuels. 2013 May 3;6(1):65. doi: 10.1186/1754-6834-6-65. Biotechnol Biofuels. 2013. PMID: 23642171 Free PMC article.
-
A novel strategy for promoting homoplasmic plastid transformant production using the barnase-barstar system.Plant Biotechnol (Tokyo). 2020 Jun 25;37(2):223-232. doi: 10.5511/plantbiotechnology.20.0503a. Plant Biotechnol (Tokyo). 2020. PMID: 32821230 Free PMC article.
-
Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea.Transgenic Res. 2003 Feb;12(1):115-22. doi: 10.1023/a:1022110402302. Transgenic Res. 2003. PMID: 12650530
-
Arabidopsis thaliana Rubisco small subunit transit peptide increases the accumulation of Thermotoga maritima endoglucanase Cel5A in chloroplasts of transgenic tobacco plants.Transgenic Res. 2010 Jun;19(3):489-97. doi: 10.1007/s11248-009-9330-8. Epub 2009 Oct 23. Transgenic Res. 2010. PMID: 19851881
-
Stable transformation of petunia plastids.Transgenic Res. 2004 Dec;13(6):523-30. doi: 10.1007/s11248-004-2374-x. Transgenic Res. 2004. PMID: 15672833
References
LinkOut - more resources
Full Text Sources
Other Literature Sources