Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Oct 1;20(44):6331-8.
doi: 10.1038/sj.onc.1204777.

14-3-3 proteins; bringing new definitions to scaffolding

Affiliations
Review

14-3-3 proteins; bringing new definitions to scaffolding

G Tzivion et al. Oncogene. .

Abstract

The 14-3-3 proteins are a part of an emerging family of proteins and protein domains that bind to serine/threonine-phosphorylated residues in a context specific manner, analogous to the Src homology 2 (SH2) and phospho-tyrosine binding (PTB) domains. 14-3-3 proteins bind and regulate key proteins involved in various physiological processes such as intracellular signaling (e.g. Raf, MLK, MEKK, PI-3 kinase, IRS-1), cell cycling (e.g. Cdc25, Wee1, CDK2, centrosome), apoptosis (e.g. BAD, ASK-1) and transcription regulation (e.g. FKHRL1, DAF-16, p53, TAZ, TLX-2, histone deacetylase). In contrast to SH2 and PTB domains, which serve mainly to mediate protein-protein interactions, 14-3-3 proteins in many cases alter the function of the target protein, thus allowing them to serve as direct regulators of their targets. This review focuses on the various mechanisms employed by the 14-3-3 proteins in the regulation of their diverse targets, the structural basis for 14-3-3-target protein interaction with emphasis on the role of 14-3-3 dimerization in target protein binding and regulation and provides an insight on 14-3-3 regulation itself.

PubMed Disclaimer

LinkOut - more resources