Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 15;112(1):29-42.
doi: 10.1016/s0165-0270(01)00451-4.

Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters

Affiliations

Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters

M Canepari et al. J Neurosci Methods. .

Abstract

Reagents capable of rapid and efficient release of neuroactive amino acids (L-glutamate, GABA and glycine) upon flash photolysis of thermally stable, inert precursors have been elusive. 7-Nitroindolinyl (NI)-caged and 4-methoxy-7-nitroindolinyl (MNI)-caged compounds that fulfil these criteria are evaluated here. These caged precursors are highly resistant to hydrolysis. Photolysis is fast (half time< or =0.26 ms) and the conversion achieved with a xenon flashlamp is about 15% for the NI-caged L-glutamate and about 35% for the MNI-caged L-glutamate. A procedure is described for calibration of photolysis in a microscope-based experimental apparatus. NI-caged L-glutamate itself showed no agonist or antagonist effects on AMPA and NMDA receptors in cultured neurones, and had no effect on climbing fibre activation of Purkinje neurones. A control compound with identical photochemistry that generated an inert phosphate upon photolysis was used to confirm that the intermediates and by-products of photolysis have no deleterious effects. MNI-caged L-glutamate is as stable and fast as NI-caged L-glutamate and similarly inert at glutamate receptors, but about 2.5 times more efficient. However, NI-caged GABA is an antagonist at GABA(A) receptors and NI-glycine an antagonist at glycine receptors. The results show the utility and limitations of these fast and stable caged neurotransmitters in the investigation of synaptic processes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources