Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Dec 11;588(3):294-301.
doi: 10.1016/0304-4165(79)90337-4.

The role of 5'-methylthioadenosine phosphorylase in 5'-methylthioadenosine-mediated inhibition of lymphocyte transformation

The role of 5'-methylthioadenosine phosphorylase in 5'-methylthioadenosine-mediated inhibition of lymphocyte transformation

A J Ferro et al. Biochim Biophys Acta. .

Abstract

To determine if increased 5'-methylthioadenosine phosphorylase activity in activated lymphocytes may be responsible for the decreased inhibitory effect noted when 5'-methylthioadenosine is added after stimulation, the activity of this enzyme was monitored during lymphocyte transformation. A direct correlation existed between the transformation process and 5'-methylthioadenosine phosphorylase activity; the longer the stimulation process progressed, the phosphorylase activity; the longer the stimulation process progressed, the greater the enzyme activity. The 7-deaza analog of 5'-methylthioadenosine, 5'-methylthiotubercidin, was utilized to explore further the role that the phosphorylase may play in the reversal process. 5'-Methylthiotubercidin acted as a potent inhibitor, but not a substrate, of the 5'-methylthioadenosine phosphorylase, and was an even more potent inhibitor of lymphocyte transformation than 5'-methylthioadenosine. However, in direct contrast to the 5'-methylthioadenosine effect, inhibition by 5'-methylthiotubercidin could not be completely reversed. These data suggest the 5'-methylthioadenosine phosphorylase plays an important role in reversing 5'-methylthioadenosine-mediated inhibition and that the potent, nonreversible inhibitory effects of 5'-methylthiotubercidin are due to its resistance to 5'-methylthioadenosine phosphorylase degradation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources