Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May 3;38(9):2030-2037.
doi: 10.1021/ic980896x.

pH-Dependent Excited-State Dynamics of [Ru(bpy)(3)](2+)-Modified Amino Acids: Effects of an Amide Linkage and Remote Functional Groups

Affiliations

pH-Dependent Excited-State Dynamics of [Ru(bpy)(3)](2+)-Modified Amino Acids: Effects of an Amide Linkage and Remote Functional Groups

Bernd Geisser et al. Inorg Chem. .

Abstract

The pH-dependent photophysical properties of a series of polypyridyl ruthenium-substituted amino acids were investigated by steady-state and time-resolved luminescence spectroscopy. [H(3)N-DAPA(Rub(2)m)-OH](PF(6))(3) (1), [H(3)N-DABA(Rub(2)m)-OH](PF(6))(3) (2), [H(3)N-Orn(Rub(2)m)-OH](PF(6))(3) (3), and [H(3)N-Lys(Rub(2)m)-OH](PF(6))(3) (4) were obtained by formation of an amide link between the omega-NH(2) group of the respective commercially available amino acid and [Rub(2)(m-OH)](2+) (b = bipyridine, m-OH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid). Due to the absence of significant electronic interactions between the ruthenium chromophore and the amino acid moieties, the energetics and extinction coefficients of the absorption spectra of 1-4 do not change as a function of pH. The luminescence intensities of these complexes, however, show a marked dependence on pH. At low pH (<2), quenching via excited-state protonation of the amide link leads to short lifetimes. In the pH 2-8 range, the lifetimes depend on the amino acid side chain length of the complex. At high pH (>9), lifetimes are approaching that of [Ru(bpy)(3)](2+), suggesting that the amino acid moiety has a negligible effect on nonadiabatic pathways in the excited-state decay of the ruthenium moiety. Our results are discussed with respect to the rapidly growing interest in ruthenium-substituted amino acids as spectroscopic and mechanistic tools in biological systems.

PubMed Disclaimer

LinkOut - more resources