Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug 22;274(1-2):209-16.
doi: 10.1016/s0378-1119(01)00607-2.

Detection of rare DNA targets by isothermal ramification amplification

Affiliations

Detection of rare DNA targets by isothermal ramification amplification

D Y Zhang et al. Gene. .

Abstract

We described previously a novel DNA amplification technique, termed ramification amplification (RAM) (Zhang et al., Gene 211 (1998) 277). This method was designed to utilize a circular probe (C-probe) that is covalently linked by a DNA ligase when it hybridizes to a target. Then, a DNA polymerase extends the bound forward primer along the C-probe and continuously displaces a downstream strand, generating a multimeric single-stranded DNA (ssDNA), analogous to in vivo 'rolling circle' replication of bacteriophage. This multimeric ssDNA then serves as a template for multiple reverse primers to hybridize, extend, and displace downstream DNA, generating a large ramified (branching) DNA complex, and resulting in an exponential amplification. Previously, we were able to achieve a significant amplification using phi29 DNA polymerase that has a high processivity and strong displacement activity. However, due to the intrinsic limitations of the polymerase, we only achieved a sensitivity of 10,000 target molecules, which is insufficient for most practical uses. Therefore, we tested several DNA polymerases and found that exo(-) Bst DNA polymerase meets the requirement for high sensitivity. By further improving the assay condition and format, we are able to detect fewer than ten targets in 1 h and to apply successfully this method for detection of Epstein-Barr virus in human lymphoma specimens.

PubMed Disclaimer

LinkOut - more resources