Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;77(10):1023-31.
doi: 10.1080/09553000110073411.

Evidence of genetic instability in 3 Gy X-ray-induced mouse leukaemias and 3 Gy X-irradiated haemopoietic stem cells

Affiliations

Evidence of genetic instability in 3 Gy X-ray-induced mouse leukaemias and 3 Gy X-irradiated haemopoietic stem cells

D MacDonald et al. Int J Radiat Biol. 2001 Oct.

Abstract

Purpose: If radiation-induced genetic instability is causal in mouse radiation leukaemogenesis, then genetic instability should be detectable in the irradiated target untransformed haemopoietic stem cell, and evidence of genetic instability detected in the clonal radiation-induced leukaemia. We have tested this hypothesis using the CBA/H mouse model of radiation-induced acute myeloid leukaemia (r-AML).

Materials and methods: Fluorescence in situ hybridisation (FISH) was employed to screen for chromosomal aberrations in mouse 3 Gy X-ray-induced r-AMLs and in the clonal descendents of control and 3 Gy X-irradiated bone marrow haemopoietic stem cells using the in vitro clonogenic CFU-A colony assay.

Results: High levels of clonal non-specific chromosomal aberrations were detected in the r-AML (approximately 4-5 aberrations/r-AML), and ongoing chromosomal instability as defined by subclonal variants detected in 5/10 r-AML. A similar analysis of CFU-A colonies revealed chromosomal aberrations in 25% of colonies derived from irradiated bone marrow (2% in controls). However, 66% of the aberrant colonies (2% in controls) exhibited ongoing genetic instability as defined by non-clonal chromosomal aberrations. Overall, 6% (121/1884) of the CFU-A cells derived from irradiated bone marrow were aberrant (0.05% in controls) of which 12% (15/121) were subclonal. No one CFU-A cell exhibited aberrations on more than one of the three chromosomes painted.

Conclusions: The high levels of non-specific genetic damage observed in the r-AMLs is therefore attributed to the accumulation of genetic lesions in the target haemopoietic stem cell over a longer time-scale after exposure than assessed in the in vitro CFU-A clonogenic assay. This is consistent with the long latency of the multi-stage radiation leukaemogenic process, and a role for radiation-induced genetic instability is inferred.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources