Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Fall;2(3):413-25.
doi: 10.1089/15270290152608598.

Muscle adaptation to altitude: tissue capillarity and capacity for aerobic metabolism

Affiliations
Review

Muscle adaptation to altitude: tissue capillarity and capacity for aerobic metabolism

O Mathieu-Costello. High Alt Med Biol. 2001 Fall.

Abstract

Prolonged exposure to high altitude leads to reduced muscle mass and performance. The fall in muscle mass follows a reduction in fiber size, which at first was believed to be accompanied by increased fiber capillarization and aerobic enzymes. Subsequent studies showed that hypoxia alone does not alter capillary number and geometry in skeletal muscles of mammals at altitude. It was also found that alterations in fiber size and aerobic enzymes depend on a number of additional factors, including animal activity and the level of hypoxia (e.g., moderate vs. extreme altitude). With training at altitude, fiber capillary number and aerobic enzymes are increased, indicating that muscle potential for plasticity is conserved in hypoxia. Recent studies have also shown that capillary number and geometry are altered in muscles of several species of birds native or exposed to higher altitude; that is, that capillary growth can occur in skeletal muscle in response to chronic exposure to high altitude. In this mini review, we summarize these data and current knowledge on muscle capillary to fiber structural relationships and their implications for muscle aerobic function at altitude.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources