Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice
- PMID: 11682100
- DOI: 10.1016/s0166-4328(01)00274-1
Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice
Abstract
The endogenous circadian clock of mammals retains synchrony with the external light:dark cycle through ocular photoreceptors. To date the identity of the photoreceptors responsible for mediating this response is unknown. This review outlines attempts using transgenic mouse models to address this deficit. Mice bearing specific inherited lesions of both rod and cone photoreceptors retain circadian photosensitivity as assessed by photoentrainment of behavioural rhythms and the light-induced suppression of pineal melatonin. These findings indicate that as yet unidentified non-rod, non-cone ocular photoreceptors are capable of contributing to circadian light responses. Nevertheless, the possibility that circadian photosensitivity is the responsibility of multiple photoreceptor classes including both rod/cone and novel photopigments remains. There is some indirect evidence in favour of this hypothesis. A definitive resolution of this issue is likely to employ comparisons of circadian action spectra in wild type and retinally degenerate mice.
Similar articles
-
Neither functional rod photoreceptors nor rod or cone outer segments are required for the photic inhibition of pineal melatonin.Endocrinology. 1999 Apr;140(4):1520-4. doi: 10.1210/endo.140.4.6672. Endocrinology. 1999. PMID: 10098483
-
Transgenic ablation of rod photoreceptors alters the circadian phenotype of mice.Neuroscience. 1999 Mar;89(2):363-74. doi: 10.1016/s0306-4522(98)00353-4. Neuroscience. 1999. PMID: 10077319
-
Photopigments and circadian systems of vertebrates.Biophys Chem. 1995 Sep-Oct;56(1-2):3-11. doi: 10.1016/0301-4622(95)00009-m. Biophys Chem. 1995. PMID: 7662867 Review.
-
Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors.Science. 1999 Apr 16;284(5413):505-7. doi: 10.1126/science.284.5413.505. Science. 1999. PMID: 10205062
-
Photoreceptors regulating circadian behavior: a mouse model.J Biol Rhythms. 1993;8 Suppl:S17-23. J Biol Rhythms. 1993. PMID: 8274758 Review.
Cited by
-
Effect of hyperlipidemia on the expression of circadian genes in apolipoprotein E knock-out atherosclerotic mice.Lipids Health Dis. 2009 Dec 30;8:60. doi: 10.1186/1476-511X-8-60. Lipids Health Dis. 2009. PMID: 20040117 Free PMC article.
-
Effect of feeding regimens on circadian rhythms: implications for aging and longevity.Aging (Albany NY). 2010 Dec 11;2(1):7-27. doi: 10.18632/aging.100116. Aging (Albany NY). 2010. PMID: 20228939 Free PMC article. Review.
-
Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones.J Neurophysiol. 2015 Aug;114(2):1321-30. doi: 10.1152/jn.00368.2015. Epub 2015 Jun 17. J Neurophysiol. 2015. PMID: 26084909 Free PMC article.
-
Sleep and circadian rhythm disturbance in kidney stone disease: a narrative review.Front Endocrinol (Lausanne). 2023 Nov 27;14:1293685. doi: 10.3389/fendo.2023.1293685. eCollection 2023. Front Endocrinol (Lausanne). 2023. PMID: 38089624 Free PMC article. Review.
-
The genomic basis of temporal niche evolution in a diurnal rodent.Curr Biol. 2023 Aug 7;33(15):3289-3298.e6. doi: 10.1016/j.cub.2023.06.068. Epub 2023 Jul 21. Curr Biol. 2023. PMID: 37480852 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources