Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct 16;204(1):129-33.
doi: 10.1111/j.1574-6968.2001.tb10875.x.

Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1

Affiliations

Thermophilic biodesulfurization of dibenzothiophene and its derivatives by Mycobacterium phlei WU-F1

T Furuya et al. FEMS Microbiol Lett. .

Abstract

Dibenzothiophene (DBT) derivatives can be detected in diesel oil following hydrodesulfurization treatment, and they are widely recognized as target compounds for more efficient desulfurization. The moderately thermophilic bacterium Mycobacterium phlei WU-F1 was isolated for its ability to grow at 50 degrees C in a medium with DBT as the sole source of sulfur. At 50 degrees C, resting cells of WU-F1 degraded 0.81 mM DBT within only 90 min to produce 2-hydroxybiphenyl as a desulfurized metabolite through the selective cleavage of carbon-sulfur bonds, and also degraded 0.81 mM of derivatives such as 2,8-dimethylDBT, 4,6-dimethylDBT and 3,4-benzoDBT within 8 h. In addition, the resting cells exhibited high DBT-desulfurizing ability over a wide temperature range from 20 to 50 degrees C. Because M. phlei WU-F1 possesses higher desulfurizing ability toward DBT and the derivatives over a wider temperature range than any other microorganisms previously reported, it may have useful practical applications for biodesulfurization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources