Temperature dependence of the energy-linked monosaccharide transport across the cell membrane of Rhodotorula gracilis
- PMID: 1168724
- DOI: 10.1007/BF01941071
Temperature dependence of the energy-linked monosaccharide transport across the cell membrane of Rhodotorula gracilis
Abstract
The temperature dependence of the active monosaccharide transport across the cell membrane of the yeast Rhodotorula gracilis has been studied between 0 and 55 degrees C with D-xylose as the transported substrate: (i) Between 0 and 10 degrees C there is virtually no transport. (ii) The initial velocity of transport increases exponentially from 15 to 30 degrees C (deltaE equal to 32 plus or minus 2 kcal/mol). (iii) At 30 degrees C a sharp "break" occurs in the Arrhenius plot and with increasing temperature the transport becomes inactivated, with a positive slope of the corresponding straight line ("deltaE equal to minus 15 kcal/mol"). (iv) In the temperature range of 50-55 degrees C, both the transport and the metabolic activity cease. In order to account for the abrupt changes of the membrane permeability, we attempted to ascribe them to phase transitions in the membrane structure: the first one, between 10 and 15 degrees C, to the crystalline: liquid-crystalline phase change; the second one, around 30 degrees C, to a change from highly ordered (low entropy) to less ordered (high entropy) membrane structure. Whereas the former phase transition is reversible, the latter appears to be irreversible. Arrhenius plots of the cell respiration exhibit a "break" at 30 degrees C, as well. However, at higher temperatures there is no thermal inactivation of the respiratory activity. The importance of a proper organization of the cell membrane constituents for the efficient transport function is discussed.