Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects
- PMID: 11687634
- PMCID: PMC60869
- DOI: 10.1073/pnas.231474698
Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects
Abstract
Rickets and hyperparathyroidism caused by a defective vitamin D receptor (VDR) can be prevented in humans and animals by high calcium intake, suggesting that intestinal calcium absorption is critical for 1,25(OH)(2) vitamin D [1,25(OH)(2)D(3)] action on calcium homeostasis. We assessed the rate of serum (45)Ca accumulation within 10 min of oral gavage in two strains of VDR-knockout (KO) mice (Leuven and Tokyo KO) and observed a 3-fold lower area under the curve in both KO strains. Moreover, we evaluated the expression of intestinal candidate genes involved in transcellular calcium transport. The calcium transport protein1 (CaT1) was more abundantly expressed at mRNA level than the epithelial calcium channel (ECaC) in duodenum, but both were considerably reduced (CaT1>90%, ECaC>60%) in the two VDR-KO strains on a normal calcium diet. Calbindin-D(9K) expression was decreased only in the Tokyo KO, whereas plasma membrane calcium ATPase (PMCA(1b)) expression was normal in both VDR-KOs. In Leuven wild-type mice, a high calcium diet inhibited (>90%) and 1,25(OH)(2)D(3) injection or low calcium diet induced (6-fold) duodenal CaT1 expression and, to a lesser degree, ECaC and calbindin-D(9K) expression. In Leuven KO mice, however, high or low calcium intake decreased calbindin-D(9K) and PMCA(1b) expression, whereas CaT1 and ECaC expression remained consistently low on any diet. These results suggest that the expression of the novel duodenal epithelial calcium channels (in particular CaT1) is strongly vitamin D-dependent, and that calcium influx, probably interacting with calbindin-D(9K), should be considered as a rate-limiting step in the process of vitamin D-dependent active calcium absorption.
Figures













Similar articles
-
Intestinal calcium absorption: Molecular vitamin D mediated mechanisms.J Cell Biochem. 2003 Feb 1;88(2):332-9. doi: 10.1002/jcb.10360. J Cell Biochem. 2003. PMID: 12520535 Review.
-
Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms.J Bone Miner Res. 2003 Oct;18(10):1725-36. doi: 10.1359/jbmr.2003.18.10.1725. J Bone Miner Res. 2003. PMID: 14584880
-
Compensatory induction of the TRPV6 channel in a calbindin-D9k knockout mouse: Its regulation by 1,25-hydroxyvitamin D3.J Cell Biochem. 2009 Dec 1;108(5):1175-83. doi: 10.1002/jcb.22347. J Cell Biochem. 2009. PMID: 19777446
-
Phenotype of a calbindin-D9k gene knockout is compensated for by the induction of other calcium transporter genes in a mouse model.J Bone Miner Res. 2007 Dec;22(12):1968-78. doi: 10.1359/jbmr.070801. J Bone Miner Res. 2007. PMID: 17696760
-
Vitamin D resistance.Best Pract Res Clin Endocrinol Metab. 2006 Dec;20(4):627-45. doi: 10.1016/j.beem.2006.09.008. Best Pract Res Clin Endocrinol Metab. 2006. PMID: 17161336 Review.
Cited by
-
Vitamin D status modulates mitochondrial oxidative capacities in skeletal muscle: role in sarcopenia.Commun Biol. 2022 Nov 24;5(1):1288. doi: 10.1038/s42003-022-04246-3. Commun Biol. 2022. PMID: 36434267 Free PMC article.
-
Tight junction CLDN2 gene is a direct target of the vitamin D receptor.Sci Rep. 2015 Jul 27;5:10642. doi: 10.1038/srep10642. Sci Rep. 2015. PMID: 26212084 Free PMC article.
-
The calcium-sensing receptor is required for normal calcium homeostasis independent of parathyroid hormone.J Clin Invest. 2003 Apr;111(7):1021-8. doi: 10.1172/JCI17416. J Clin Invest. 2003. PMID: 12671051 Free PMC article.
-
Emergencies of calcium homeostasis.Rev Endocr Metab Disord. 2003 May;4(2):167-75. doi: 10.1023/a:1022994104070. Rev Endocr Metab Disord. 2003. PMID: 12766545 Review. No abstract available.
-
Role of Vitamin D in Cognitive Dysfunction: New Molecular Concepts and Discrepancies between Animal and Human Findings.Nutrients. 2021 Oct 20;13(11):3672. doi: 10.3390/nu13113672. Nutrients. 2021. PMID: 34835929 Free PMC article. Review.
References
-
- Reichel H, Koeffler H P, Norman A W. N Engl J Med. 1989;320:980–991. - PubMed
-
- Haussler M R, Whitfield G K, Haussler C A, Hsieh J C, Thompson P D, Selznick S H, Dominguez C E, Jurutka P W. J Bone Miner Res. 1998;13:325–349. - PubMed
-
- Hochberg Z, Tiosano D, Even L. J Pediatr. 1992;121:803–808. - PubMed
-
- Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, Kawakami T, Arioka K, Sato H, Uchiyama Y, et al. Nat Genet. 1997;16:391–396. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous