Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 1;184(1):71-9.
doi: 10.1007/s00232-001-0075-4.

Bending the MDCK cell primary cilium increases intracellular calcium

Affiliations

Bending the MDCK cell primary cilium increases intracellular calcium

H A Praetorius et al. J Membr Biol. .

Abstract

We tested the hypothesis that the primary cilium of renal epithelia is mechanically sensitive and serves as a flow sensor in MDCK cells using differential interference contrast and fluorescence microscopy. Bending the cilium, either by suction with a micropipette or by increasing the flow rate of perfusate, causes intracellular calcium to substantially increase as indicated by the fluorescent indicator, Fluo-4. This calcium signal is initiated by Ca2+-influx through mechanically sensitive channels that probably reside in the cilium or its base. The influx is followed by calcium release from IP3-sensitive stores. The calcium signal then spreads as a wave from the perturbed cell to its neighbors by diffusion of a second messenger through gap junctions. This spreading of the calcium wave points to flow sensing as a coordinated event within the tissue, rather than an isolated phenomenon in a single cell. Measurement of the membrane potential difference by microelectrode during perfusate flow reveals a profound hyperpolarization during the period of elevated intracellular calcium. We conclude that the primary cilium in MDCK cells is mechanically sensitive and responds to flow by greatly increasing intracellular calcium.

PubMed Disclaimer

MeSH terms

LinkOut - more resources