Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;27(4):259-64.
doi: 10.1038/sj.jim.7000195.

Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars

Affiliations

Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars

B S Dien et al. J Ind Microbiol Biotechnol. 2001 Oct.

Abstract

Recombinant Escherichia coli have been constructed for the conversion of glucose as well as pentose sugars into L-lactic acid. The strains carry the lactate dehydrogenase gene from Streptococcus bovis on a low copy number plasmid for production of L-lactate. Three E. coli strains were transformed with the plasmid for producing L-lactic acid. Strains FBR9 and FBR11 were serially transferred 10 times in anaerobic cultures in sugar-limited medium containing glucose or xylose without selective antibiotic. An average of 96% of both FBR9 and FBR11 cells maintained pVALDH1 in anaerobic cultures. The fermentation performances of FBR9, FBR10, and FBR11 were compared in pH-controlled batch fermentations with medium containing 10% w/v glucose. Fermentation results were superior for FBR11, an E. coli B strain, compared to those observed for FBR9 or FBR10. FBR11 exhausted the glucose within 30 h, and the maximum lactic acid concentration (7.32% w/v) was 93% of the theoretical maximum. The other side-products detected were cell mass and succinic acid (0.5 g/l).

PubMed Disclaimer

MeSH terms

LinkOut - more resources