Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Oct;8(5):303-20.
doi: 10.1038/sj/mn/7800106.

The peritoneal microcirculation in peritoneal dialysis

Affiliations
Review

The peritoneal microcirculation in peritoneal dialysis

B Rippe et al. Microcirculation. 2001 Oct.

Abstract

This paper deals with the peritoneal microcirculation and with peritoneal exchange occurring in peritoneal dialysis (PD). The capillary wall is a major barrier to solute and water exchange across the peritoneal membrane. There is a bimodal size-selectivity of solute transport between blood and the peritoneal cavity, through pores of radius approximately 40-50 A as well as through a very low number of large pores of radius approximately 250 A. Furthermore, during glucose-induced osmosis during PD, nearly 40% of the total osmotic water flow occurs through molecular water channels, termed "aquaporin-1." This causes an inequality between 1 - sigma and the sieving coefficient for small solutes, which is a key feature of the "three-pore model" of peritoneal transport. The peritoneal interstitium, coupled in series with the capillary walls, markedly modifies small-solute transport and makes large-solute transport asymmetric. Thus, although severely restricted in the blood-to-peritoneal direction, the absorption of large solutes from the peritoneal cavity occurs at a high clearance rate ( approximately 1 mL/min), largely independent of molecular radius. True absorption of macromolecules to the blood via lymphatics, however, seems to be occurring at a rate of approximately 0.2 mL/min. Several controversial issues regarding transcapillary and transperitoneal exchange mechanisms are discussed in this paper.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources