Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Oct;31(4):325-48.

Review: molecular pathology of cyclooxygenase-2 in cancer-induced angiogenesis

Affiliations
  • PMID: 11688844
Review

Review: molecular pathology of cyclooxygenase-2 in cancer-induced angiogenesis

E Fosslien. Ann Clin Lab Sci. 2001 Oct.

Abstract

Cancer-induced angiogenesis is the result of increased expression of angiogenic factors, or decreased expression of anti-angiogenic factors, or a combination of both events. For instance, in colon cancer, the malignant cells, the stromal fibroblasts, and the endothelial cells all exhibit strong staining for cyclooxygenase-2 (COX-2), the rate-controlling enzyme in prostaglandin (PG) synthesis. In various cancer tissues, vascular endothelial growth factor (VEGF) and transforming growth factor beta (TGF-beta) co-localize with COX-2. Strong COX-2 and VEGF expression is highly correlated with increased tumor microvascular density (MCD); new vessels proliferate in areas of the tumor that express COX-2. Moreover, high MVD is a predictor of poor prognosis in breast and cervical cancers. COX-2 and VEGF expression are elevated in breast and prostate cancer tissues and their cell-lines. In vitro, PGE2 induces VEGE Supernatants of cultured cells from breast, prostate, and squamous cell cancers contain angiogenic proteins such as COX-2 and VEGF that induce in vitro angiogenesis. A selective COX-2 inhibitor, NS-398, restores tumor cell apoptosis, reduces microvascular density, and reduces tumor growth of PC-3 prostate carcinoma cells xenografted into nude mice. The COX-2 produced by a malignant tumor and COX-2 produced by the surrounding host tissue both contribute to new vessel formation, which explains how selective COX-2 inhibition reduces tumor growth where the tumor COX-2 gene has been silenced by methylation.

PubMed Disclaimer

MeSH terms

LinkOut - more resources