Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells
- PMID: 11689467
- DOI: 10.1096/fj.01-0260com
Alpha-lipoic acid inhibits TNF-alpha-induced NF-kappaB activation and adhesion molecule expression in human aortic endothelial cells
Abstract
Endothelial activation and monocyte adhesion are initiating steps in atherogenesis thought to be caused in part by oxidative stress. The metabolic thiol antioxidant alpha-lipoic acid has been suggested to be of therapeutic value in pathologies associated with redox imbalances. We investigated the role of (R)-alpha-lipoic acid (LA) vs. glutathione and ascorbic acid in tumor necrosis factor alpha (TNF-alpha) -induced adhesion molecule expression and nuclear factor kappaB (NF-kappaB) signaling in human aortic endothelial cells (HAEC). Preincubation of HAEC for 48 h with LA (0.05-1 mmol/l) dose-dependently inhibited TNF-alpha (10 U/ml) -induced adhesion of human monocytic THP-1 cells, as well as mRNA and protein expression of E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. LA also strongly inhibited TNF-alpha-induced mRNA expression of monocyte chemoattractant protein-1 but did not affect expression of TNF-alpha receptor 1. Furthermore, LA dose-dependently inhibited TNF-alpha-induced IkappaB kinase activation, subsequent degradation of IkappaB, the cytoplasmic NF-kappaB inhibitor, and nuclear translocation of NF-kappaB. In contrast, TNF-alpha-induced NF-kappaB activation and adhesion molecule expression were not affected by ascorbic acid or by manipulating cellular glutathione status with l-2-oxo-4-thiazolidinecarboxylic acid, N-acetyl-l-cysteine, or d,l-buthionine-S,R-sulfoximine. Our data show that clinically relevant concentrations of LA, but neither vitamin C nor glutathione, inhibit adhesion molecule expression in HAEC and monocyte adhesion by inhibiting the IkappaB/NF-kappaB signaling pathway at the level, or upstream, of IkappaB kinase.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
