Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;15(13):2503-7.
doi: 10.1096/fj.01-0240hyp.

Cysteine-Zn2+ complexes: unique molecular switches for inducible nitric oxide synthase-derived NO

Affiliations

Cysteine-Zn2+ complexes: unique molecular switches for inducible nitric oxide synthase-derived NO

K D Kröncke. FASEB J. 2001 Nov.

Abstract

Nitric oxide (NO) in the low nanomolar range acts as a transcellular messenger molecule to initiate regulatory and physiological responses in nearby target cells via binding to the soluble guanylate cyclase heme moiety. Higher NO concentrations, as synthesized by the inducible NO synthase (iNOS) during inflammatory processes, show additional effects: NO may react with O2, yielding nitrogen oxides like N2O3 that are able to nitrosate thiols. A variety of proteins involved in very different functions of the cell contain cysteine-Zn2+ complexes. Effects of NO on different proteins containing cysteine-Zn2+ domains and playing essential roles during transcription, protein folding, and proteolysis are discussed. It is suggested that iNOS-derived NO acts as a signal molecule targeting cysteine-Zn2+ linkages, thus enabling cells to react toward nitrosative stress.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources