Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;122(5):955-62.
doi: 10.1067/mtc.2001.117621.

Mechanical properties of myxomatous mitral valves

Affiliations

Mechanical properties of myxomatous mitral valves

J E Barber et al. J Thorac Cardiovasc Surg. 2001 Nov.

Abstract

Objective: We sought to characterize the mechanical properties of normal and myxomatous mitral valve tissues.

Methods: We tested 113 mitral valve sections from patients undergoing mitral valve repair or replacement for myxomatous mitral valve prolapse and sections from 33 normal valves obtained at autopsy.

Results: Myxomatous mitral valve leaflets were more extensible than normal leaflets when tested parallel to the free edge (41.2% +/- 18.5% vs 17.3% +/- 6.7% circumferential strain [mean +/- SD]; P <.001), as well as perpendicular to the free edge (43.2% +/- 19.4% vs 17.3% +/- 6.7% radial strain; P <.001). Myxoid leaflets were less stiff circumferentially (4.0 +/- 1.6 vs 6.1 +/- 1.4 kN/m; P <.001) and radially (4.5 +/- 1.1 vs 6.1 +/- 1.4 kN/m; P <.001) than normal leaflets. Leaflet strength, however, was similar in both groups.

Conclusions: Myxomatous mitral valve leaflets are physically and mechanically different from normal mitral valve leaflets. They are more extensible and less stiff. Compared with chordae examined previously, however, they are affected much less. Myxomatous mitral valve disease may therefore affect the collagen in the chordae more severely than that in the leaflets.

PubMed Disclaimer

Publication types