Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Oct 30;49(1-3):481-90.
doi: 10.1016/s0165-022x(01)00215-9.

Novel ligands for the affinity-chromatographic purification of antibodies

Affiliations
Review

Novel ligands for the affinity-chromatographic purification of antibodies

G Fassina et al. J Biochem Biophys Methods. .

Abstract

Affinity chromatography represents one of the most powerful fractionation techniques for the large-scale purification of biotechnological products. Despite its potential, the use of this methodology is limited by the availability of specific ligands for each target. Combinatorial chemistry and molecular modeling, often combined, have become interesting and innovative methods for generating novel ligands, tailored to specific biotechnological needs. One of the greatest area of application has been the discovery of novel ligands for the purification of antibodies, which represent an emerging but very important class of innovative therapeutic agents for the treatment of a vast array of diseases. Naturally available affinity ligands, such as Protein A or G for IgG purification or lectins for IgA and IgM purification, which are obtained from microorganisms or genetically modified bacteria through complex and expensive procedures, are not well suited for large-scale purification and require moreover time-consuming analytical controls to check for the presence of contaminants which may affect the safety of the purified antibody for clinical purposes. Recent results suggest that the application of combinatorial technologies and molecular modeling for the discovery of synthetic ligands may open new avenues for the development of more efficient, less expensive and--more importantly--safer procedures for antibody purification at the industrial level.

PubMed Disclaimer

MeSH terms

LinkOut - more resources