Enhanced cell polarity in mutants of the budding yeast cyclin-dependent kinase Cdc28p
- PMID: 11694591
- PMCID: PMC60278
- DOI: 10.1091/mbc.12.11.3589
Enhanced cell polarity in mutants of the budding yeast cyclin-dependent kinase Cdc28p
Abstract
The yeast cyclin-dependent kinase Cdc28p regulates bud morphogenesis and cell cycle progression via the antagonistic activities of Cln and Clb cyclins. Cln G1 cyclins direct polarized growth and bud emergence, whereas Clb G2 cyclins promote isotropic growth of the bud and chromosome segregation. Using colony morphology as a screen to dissect regulation of polarity by Cdc28p, we identified nine point mutations that block the apical-isotropic switch while maintaining other functions. Like a clb2 Delta mutation, each confers tubular bud shape, apically polarized actin distribution, unipolar budding, and delayed anaphase. The mutations are all suppressed by CLB2 overexpression and are synthetically lethal with a CLB2 deletion. However, defects in multiple independent pathways may underlie their common phenotype, because the mutations are scattered throughout the CDC28 sequence, complement each other, and confer diverse biochemical properties. Glu12Gly, a mutation that alters a residue involved in Swe1p inhibition of Cdc28p, was unique in being suppressed by deficiency of SWE1 or CLN1. With wild-type CDC28, filament formation induced by CLN1 overexpression was markedly decreased in a SWE1 deletion. These results suggest that Swe1p, via inhibition of Clb2p/Cdc28p, may mediate much of the effect of Cln1p on filamentous morphogenesis.
Figures
References
-
- Amberg DC, Basart E, Botstein D. Defining protein interactions with yeast actin in vivo. Nat Struct Biol. 1995;2:28–35. - PubMed
-
- Amon A, Irniger S, Nasmyth K. Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle. Cell. 1994;77:1037–1050. - PubMed
-
- Brown NR, Noble ME, Endicott JA, Johnson LN. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol. 1999;1:438–443. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
