Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;108(9):1253-9.
doi: 10.1172/JCI14321.

Thyroid autoimmunity

Affiliations

Thyroid autoimmunity

B Rapoport et al. J Clin Invest. 2001 Nov.
No abstract available

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic representation of the TSHR with its large (397−amino acid residue without signal peptide) ectodomain, seven membrane-spanning segments, and short cytoplasmic tail. TSHR intramolecular cleavage into A and B subunits is associated with the loss of a C peptide region that corresponds approximately to a 50−amino acid “insertion” in the TSHR absent in the noncleaving LH and FSH receptors. The C peptide region is not removed intact. Following cleavage at upstream Site 1, the C peptide is rapidly degraded downstream to the Site 2 region. Evidence suggests that N-terminal degradation of the B subunit continues thereafter, leading to loss of the Cys residues tethering the A subunit and to shedding of the latter. The Cys-rich N-terminus of the A subunit is an important component of thyroid-stimulating autoantibodies and is likely to contain two disulfide bonds (hypothetically shown by dotted lines) contributing to a conformationally important portion of the molecule.
Figure 2
Figure 2
Hypothetical three-dimensional structure of the TPO ectodomain based on the structure of myeloperoxidase (MPO). The ribbon diagram represents one TPO monomer beginning at residue 122 because no structural information is available on the N-terminal 121 amino acid prosequence of MPO (large blue circle), which is removed from the mature molecule. The C-terminus of MPO (“C578”) corresponds to TPO amino acid residue 736. Therefore, the diagram also does not provide insight into the region of the TPO ectodomain extending downstream to its insertion into the plasma membrane (residue 848). Epitopic footprinting identified lysine (K) 713 to be within the epitope of one of the human monoclonal TPO autoantibodies (TR1.9) that define the TPO immunodominant region. This residue is included in the linear epitope (shaded) of mouse mAb no. 47, which is recognized by a small proportion of TPO autoantibodies in an individual patient’s serum (16). Modified, with permission, from refs. , (copyright 2001, The American Association of Immunologists).

References

    1. Ludgate, M., Costagliola, S., and Vassart, G. 2000. Animal models of Graves’ disease. In Graves’ disease: pathogenesis and treatment. B. Rapoport and S.M. McLachlan, editors. Kluwer Academic Publishers. Norwell, Massachusetts, USA. 127–138.
    1. McLachlan SM, Rapoport B. The molecular biology of thyroid peroxidase: cloning, expression and role as autoantigen in autoimmune thyroid disease. Endocr Rev. 1992;13:192–206. - PubMed
    1. Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM. The thyrotropin receptor: interaction with thyrotropin and autoantibodies. Endocr Rev. 1998;19:673–716. - PubMed
    1. Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature. 1996;379:458–460. - PubMed
    1. Zeng J, Fenna RE. X-ray crystal structure of canine myeloperoxidase at 3 A resolution. J Mol Biol. 1992;226:185–207. - PubMed

Publication types