Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Oct 19;429(1-3):71-8.
doi: 10.1016/s0014-2999(01)01307-3.

NMDA receptors as targets for drug action in neuropathic pain

Affiliations
Review

NMDA receptors as targets for drug action in neuropathic pain

C G Parsons. Eur J Pharmacol. .

Abstract

Hyperalgesia and allodynia following peripheral tissue or nerve injury are not only due to an increase in the sensitivity of primary afferent nociceptors at the site of injury but also depend on NMDA receptor-mediated central changes in synaptic excitability. Functional inhibition of NMDA receptors can be achieved through actions at different recognition sites such as the primary transmitter site (competitive), strychnine-insensitive glycine site (glycine(B)), polyamine site (NR2B selective) and phencyclidine site located inside the cationic channel. Unfortunately, most agents which completely block NMDA receptors cause numerous side effects such as memory impairment, psychotomimetic effects, ataxia and motor incoordination. There is now, however, considerable evidence that moderate affinity channel blockers, glycine(B) and NR2B selective antagonists show a much better profile in animal models than high affinity channel blockers and competitive NMDA receptor antagonists. These "therapeutically" safe NMDA receptor antagonists are also able to slow or prevent the development of opioid tolerance, indicating the utility of their combination with opioids in the treatment of chronic pain. The antinociceptive effects of NMDA receptor antagonists and opioids could be predicted to be synergistic and the presence of an NMDA receptor antagonist should block both the development of chronic pain states and inhibit the development of tolerance to the analgesic effects of morphine. Peripheral NMDA receptors offer a very attractive target for NMDA receptor antagonists that do not cross the blood brain barrier in inflammatory and visceral pain. Such agents might be predicted to be devoid of CNS side effects at doses producing powerful antinociception at peripheral NMDA receptors.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources