Identification of epilepsy genes in human and mouse
- PMID: 11700294
- PMCID: PMC2765248
- DOI: 10.1146/annurev.genet.35.102401.091142
Identification of epilepsy genes in human and mouse
Abstract
The development of molecular markers and genomic resources has facilitated the isolation of genes responsible for rare monogenic epilepsies in human and mouse. Many of the identified genes encode ion channels or other components of neuronal signaling. The electrophysiological properties of mutant alleles indicate that neuronal hyperexcitability is one cellular mechanism underlying seizures. Genetic heterogeneity and allelic variability are hallmarks of human epilepsy. For example, mutations in three different sodium channel genes can produce the same syndrome, GEFS+, while individuals with the same allele can experience different types of seizures. Haploinsufficiency for the sodium channel SCN1A has been demonstrated by the severe infantile epilepsy and cognitive deficits in heterozygotes for de novo null mutations. Large-scale patient screening is in progress to determine whether less severe alleles of the genes responsible for monogenic epilepsy may contribute to the common types of epilepsy in the human population. The development of pharmaceuticals directed towards specific epilepsy genotypes can be anticipated, and the introduction of patient mutations into the mouse genome will provide models for testing these targeted therapies.
Figures
Similar articles
-
Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus.Neurobiol Dis. 2011 Mar;41(3):655-60. doi: 10.1016/j.nbd.2010.11.016. Epub 2010 Dec 13. Neurobiol Dis. 2011. PMID: 21156207 Free PMC article.
-
Channelopathies as a genetic cause of epilepsy.Curr Opin Neurol. 2003 Apr;16(2):171-6. doi: 10.1097/01.wco.0000063767.15877.c7. Curr Opin Neurol. 2003. PMID: 12644745 Review.
-
The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy.Hum Mol Genet. 2007 Dec 1;16(23):2892-9. doi: 10.1093/hmg/ddm248. Epub 2007 Sep 19. Hum Mol Genet. 2007. PMID: 17881658
-
Mutations of voltage-gated sodium channels in movement disorders and epilepsy.Novartis Found Symp. 2002;241:72-81; discussion 82-6, 226-32. Novartis Found Symp. 2002. PMID: 11771652 Review.
-
Ion channels and the genetic contribution to epilepsy.J Child Neurol. 1999 Jan;14(1):58-66. doi: 10.1177/088307389901400104. J Child Neurol. 1999. PMID: 10025538 Review.
Cited by
-
Using mouse models of autism spectrum disorders to study the neurotoxicology of gene-environment interactions.Neurotoxicol Teratol. 2013 Mar-Apr;36:17-35. doi: 10.1016/j.ntt.2012.08.007. Epub 2012 Sep 7. Neurotoxicol Teratol. 2013. PMID: 23010509 Free PMC article. Review.
-
Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy.J Neurosci. 2004 Sep 22;24(38):8232-6. doi: 10.1523/JNEUROSCI.2695-04.2004. J Neurosci. 2004. PMID: 15385606 Free PMC article.
-
Modeling brain dynamics using computational neurogenetic approach.Cogn Neurodyn. 2008 Dec;2(4):319-34. doi: 10.1007/s11571-008-9061-1. Epub 2008 Sep 16. Cogn Neurodyn. 2008. PMID: 19003458 Free PMC article.
-
Overlaps, gaps, and complexities of mouse models of Developmental and Epileptic Encephalopathy.Neurobiol Dis. 2021 Jan;148:105220. doi: 10.1016/j.nbd.2020.105220. Epub 2020 Dec 7. Neurobiol Dis. 2021. PMID: 33301879 Free PMC article. Review.
-
Altered hippocampal activation in seizure-prone CACNA2D2 knockout mice.bioRxiv [Preprint]. 2023 Nov 10:2023.11.08.565511. doi: 10.1101/2023.11.08.565511. bioRxiv. 2023. Update in: eNeuro. 2024 May 15;11(5):ENEURO.0486-23.2024. doi: 10.1523/ENEURO.0486-23.2024. PMID: 37986872 Free PMC article. Updated. Preprint.
References
-
- Abriel H, Wehrens XH, Benhorin J, Kerem B, Kass RS. Molecular pharmacology of the sodium channel mutation D1790G linked to the long-QT syndrome. Circulation. 2000;102:921–25. - PubMed
-
- Ashcroft F. Ion Channels and Disease. San Diego: Academic; 2000.
-
- Balaguero N, Barclay J, Mione M, Canti C, Brodbeck J, et al. Reduction in voltage-dependent calcium channel function in cerebellar purkinje cells of the mouse mutant ducky, which has a null mutation for the calcium channel accessory subunit α2δ2. Soc Neurosci Abstr. 2000;26:365.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases