Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;41(22):2919-24.
doi: 10.1016/s0042-6989(01)00171-7.

Unilateral light-dark transitions affect choroidal blood flow in both eyes

Affiliations
Free article

Unilateral light-dark transitions affect choroidal blood flow in both eyes

G Fuchsjäger-Mayrl et al. Vision Res. 2001 Oct.
Free article

Abstract

There is recent evidence that the perfusion of the choroid changes during dark-light transitions. We set out to investigate this response in more detail and to elucidate possible mechanisms involved in this process. For this purpose, the effect of dark-light transitions on choroidal perfusion was studied in healthy subjects. Choroidal blood flow and ocular fundus pulsation amplitude were measured as indices of choroidal perfusion during dark-light transitions using laser Doppler flowmetry and laser interferometry, respectively. In the first experiment, subjects were first kept in room light for 20 min, then light conditions were changed to darkness for 20 min, and thereafter, subjects were exposed to room light again. Both choroidal parameters decreased (-12% to -14%) during darkness but returned to baseline after the final room light period. In the second experiment, the index eye underwent the same procedure, whereas the contralateral eye was kept in light throughout the experiment. Choroidal haemodynamic parameters in the index eye reacted in a way comparable to that seen in the first experiment. The eye that was kept in light also reacted, but the effect tended to be less pronounced than that seen in the index eye (-8% to -10%). The observation that choroidal blood flow in both eyes reacts during unilateral light-dark transitions indicates that choroidal perfusion rate is adapted to retinal illumination conditions by neural control mechanisms.

PubMed Disclaimer

LinkOut - more resources