Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Dec;13(12):2763-97.
doi: 10.1162/089976601317098529.

Gaussian process approach to spiking neurons for inhomogeneous Poisson inputs

Affiliations
Comparative Study

Gaussian process approach to spiking neurons for inhomogeneous Poisson inputs

K I Amemori et al. Neural Comput. 2001 Dec.

Abstract

This article presents a new theoretical framework to consider the dynamics of a stochastic spiking neuron model with general membrane response to input spike. We assume that the input spikes obey an inhomogeneous Poisson process. The stochastic process of the membrane potential then becomes a gaussian process. When a general type of the membrane response is assumed, the stochastic process becomes a Markov-gaussian process. We present a calculation method for the membrane potential density and the firing probability density. Our new formulation is the extension of the existing formulation based on diffusion approximation. Although the single Markov assumption of the diffusion approximation simplifies the stochastic process analysis, the calculation is inaccurate when the stochastic process involves a multiple Markov property. We find that the variation of the shape of the membrane response, which has often been ignored in existing stochastic process studies, significantly affects the firing probability. Our approach can consider the reset effect, which has been difficult to deal with by analysis based on the first passage time density.

PubMed Disclaimer

Publication types

LinkOut - more resources