Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 1;62(9):1229-38.
doi: 10.1016/s0006-2952(01)00754-7.

Inhibition of depolarization-induced [3H]noradrenaline release from SH-SY5Y human neuroblastoma cells by some second-generation H(1) receptor antagonists through blockade of store-operated Ca(2+) channels (SOCs)

Affiliations

Inhibition of depolarization-induced [3H]noradrenaline release from SH-SY5Y human neuroblastoma cells by some second-generation H(1) receptor antagonists through blockade of store-operated Ca(2+) channels (SOCs)

M Taglialatela et al. Biochem Pharmacol. .

Abstract

In the present study, the effect of the blockade of membrane calcium channels activated by intracellular Ca(2+) store depletion on basal and depolarization-induced [3H]norepinephrine ([3H]NE) release from SH-SY5Y human neuroblastoma cells was examined. The second-generation H(1) receptor blockers astemizole, terfenadine, and loratadine, as well as the first-generation compound hydroxyzine, inhibited [3H]NE release induced by high extracellular K(+) concentration ([K(+)](e)) depolarization in a concentration-dependent manner (the IC(50)s were 2.3, 1.7, 4.8, and 9.4 microM, respectively). In contrast, the more hydrophilic second-generation H(1) receptor blocker cetirizine was completely ineffective (0.1-30 microM). The inhibition of high [K(+)](e)-induced [3H]NE release by H(1) receptor blockers seems to be related to their ability to inhibit Ca(2+) channels activated by Ca(i)(2+) store depletion (SOCs). In fact, astemizole, terfenadine, loratadine, and hydroxyzine, but not cetirizine, displayed a dose-dependent inhibitory action on the increase in intracellular Ca(2+) concentrations ([Ca(2+)](i)) obtained with extracellular Ca(2+) reintroduction after Ca(i)(2+) store depletion with thapsigargin (1 microM), an inhibitor of the sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA) pump. The rank order of potency for SOC inhibition by these compounds closely correlated with their inhibitory properties on depolarization-induced [3H]NE release from SH-SY5Y human neuroblastoma cells. Nimodipine (1 microM) plus omega-conotoxin (100 nM) did not interfere with the present model for SOC activation. In addition, the inhibition of depolarization-induced [3H]NE release does not seem to be attributable to the blockade of the K(+) currents carried by the K(+) channels encoded by the human Ether-a-Gogo Related Gene (I(HERG)) by these antihistamines. In fact, whole-cell voltage-clamp experiments revealed that the IC(50) for astemizole-induced hERG blockade is about 300-fold lower than that for the inhibition of high K(+)-induced [3H]NE release. Furthermore, current-clamp experiments in SH-SY5Y cells showed that concentrations of astemizole (3 microM) which were effective in preventing depolarization-induced [3H]NE release were unable to interfere with the cell membrane potential under depolarizing conditions (100 mM [K(+)](e)), suggesting that hERG K(+) channels do not contribute to membrane potential control during exposure to elevated [K(+)](e). Collectively, the results of the present study suggest that, in SH-SY5Y human neuroblastoma cells, the inhibition of SOCs by some second-generation antihistamines can prevent depolarization-induced neurotransmitter release.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources