Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec;281(6):R1952-65.
doi: 10.1152/ajpregu.2001.281.6.R1952.

Muscle contractile properties during intermittent nontetanic stimulation in rat skeletal muscle

Affiliations
Free article

Muscle contractile properties during intermittent nontetanic stimulation in rat skeletal muscle

E Verburg et al. Am J Physiol Regul Integr Comp Physiol. 2001 Dec.
Free article

Abstract

To examine changes in contractile properties and mechanisms of fatigue during submaximal nontetanic skeletal muscle activity, in situ perfused soleus (60-min protocol) and extensor digitorum longus (EDL; 10-min protocol) muscles of the rat were electrically stimulated intermittently at low frequency. The partly fused trains of contractions showed a two-phase change in appearance. During the first phase, relaxation slowed, one-half relaxation time increased, and maximal relaxation first derivative of force (dF/dt) decreased. Developed force during the trains was reduced and was closely related to the rate of relaxation in this first phase. During the second phase, relaxation became faster again, one-half relaxation time decreased, and force returned to resting levels between contractions in a train. In contrast, developed force remained reduced, so that peak force of the contractions was 51% (soleus) and 30% (EDL) of control. In the soleus muscle, the changes in contractile properties were not related to ATP, creatine phosphate, or lactate content. The changes in contractile properties fit best with a mechanism of fatigue involving changes in Ca(2+) handling by the sarcoplasmic reticulum.

PubMed Disclaimer

Publication types

LinkOut - more resources